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This paper mainly considers the smooth complex spline approximation of Cauchy-
type integral operators over an open arc. First, the smoothness of the operators is
investigated, then some properties of complex splines are discussed, and finally the
error estimates of the approximation are given. © 2002 Elsevier Science (USA)

1. INTRODUCTION

The approximation for Cauchy-type singular integrals and the numerical
solution of the corresponding equations have been studied in many papers,
and a series of important results have been obtained [3, 7, 8, 13]. However,
the rates of convergence for the approximation are not very satisfactory. In
fact, the best rates have not been revealed. The reason may be that, as
mappings, the smoothness of the integrals is not investigated thoroughly.
For example, paper [7] discusses the following operator:

Y (D e(t
A(‘P)(f) = a(t)wr () p(t) — @/lwd

T, te-1,1], (L.1)
where a € H[—1,1], b is a polynomial and w, is a weight function
constructed from a and b (for details, see [7] or [6]), and proves that if
wy € H'[-1,1] and ¢ € C"*[—1,1] for 0<y,u<1, then Ap € H*[-1,1]
where A = min(y, x). This means that the smoothness of A¢ depends on w5.
But in fact, as an operator, 4 is sufficiently smooth and its smoothness is not
affected by w,. This can be illustrated when a(¢) = 0 and b(¢) = —1 in (1.1).
In this case, 4 becomes

__/ VI-7o(1) ,

—Cdr, re[-L1] (1.2)
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and it is bounded on C"™#[—1, 1] because we can easily convert it to a periodic
singular integral or a Cauchy-type integral on a unit circle (cf. [15, 18]).
Usually, the Cauchy-type singular integrals are of the form

Tp(qo)(Z)El/F * 4. e, (1.3)

T T—1

where I' is a smooth or piecewise smooth oriented curve. If I" is closed, as a
mapping, Tr is bounded on C"™#(I'), and if I is an axis, T has the similar
property [14,15]. However, if I" is an open arc, the property disappears.
Instead, we consider its “weighted type”. This is also a natural approach to
the solution of singular integral equations over an open arc.

Generally speaking, by a simple transformation, our problems on an open
arc can be converted to those on an interval, and then the problems may be
solved more conveniently. But this will bring about at least two problems:
the first is that the kernels of those integrals may become more complicated
and it will then be more difficult for some treatments, such as numerical
evaluations; the second is that a smooth function on the arc, as well as the
related smooth operators, may become less or even not smooth on the
interval if the arc is not perfectly smooth, and it will then impair the rates of
its approximation. On the other hand, it is known that complex splines have
a lot of advantages over other functions such as polynomials in
approximation, especially in the approximation for those functions defined
on arbitrary curves. So it will be more meaningful to discuss the singular
integral operators and their complex spline approximation directly on arcs.

In this paper, our discussion focuses on the Cauchy singular integral
operators of the form

If
Q

Aw(@)(2)

i T—t

(O)w(t) (1) +@/F Mdr, tel, (14

which are derived from the theory of singular integral equations. Here we
assume a, b € H(I') satisfying

(1) — b*(1) #0, ter

and I' is a smooth or piecewise smooth oriented open arc from o« to 5. The
function w is constructed as follows (cf. [5, 6, 12]).

Let G(¢) = ZE;;J:%;, and choose a continuous branch of G(7) such that

0<0(r) <1, (1.5)
where () = argGll) e [v] denote the integral part of the real number y and

2n
K= —[=0(p)]. (1.6)
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Define the canonical function [12, 15]

X(z) = (f—2) “exp {L/F In G(v) dr} :¢T (1.7)

27 T—2z
and now let
w(t) = [(a(t) — b(t))X*(t)]fl, terl. (1.8)

It is easy to verify that w(z) € H(I') and w(¢)#0,¢ € I'\{a, f}, which is
similar to a weight function.

From the above construction, we know the smoothness of the function w
is poor. However, we will show in this paper that the operator A4,, is very
smooth. Furthermore, if w(a) =w(f)=0 and be C™*(I), A4, is a
bounded operator on C"™#(I'). Besides, we make a further study of complex
interpolating splines and obtain some interesting properties. And then, there
follow the results of the complex spline approximation for the operator 4,,.
All these appear to be very attractive.

Throughout the paper, we assume that: 0<u<1, m is a nonnegative
integer, I = af3, ¢ is a constant such that the arc length | t]Alz |<colti — o]
for all ¢, € I', C(I') and C™(I') denote the spaces of continuous and m-
times continuously differentiable complex-valued functions on I, respec-
tively, ||| = maxier (D), ¥l = S0 [lW*]], the modulus of con-
tinuity for e C(I') is denoted by w(,x), M,(¥)=supy. <
12Wx) - cmi(ry = {y € C™(I): M, (p™) <00}, H*(I') = COM(T'), H(T)
= Unepat H'@): (Wl = W11+ M), 1]l = [Wllen + Mu(y™),
and c is an absolute positive constant taking different value in different place.

The rest of the paper is organized as follows. In the next section, we show
the smoothness of the operator A4,,. Some properties of complex splines are
discussed in Section 3 and the results of spline approximation for 4,, are given
in Section 4. In Section 5 we illustrate an application for the approximation
and remark on the case i = 1, constant ¢ and some other applications. The
proof of Lemma 2.2 is longer and thus is put in the final section.

2. SMOOTHNESS OF SINGULAR INTEGRAL OPERATORS

In this section, we start our discussion for the smoothness of operator 4,,
from the introduction of some operators and the proofs of two lemmas.
Let u € C(I'). Define the operator S, ,, as

Sum(1)(0) = m! [ ue! D= T”;)(n{?l(f’ Ve, fecmnr),

r (t—
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where T, (f)(1,1) = f(6) + /(1) (t = 1) + - - + L0 — 1" and To(f)(z, 1)
=f(t). fm=0, S,,,(f) is written as S,(f).

Let ¥y (t,1) = k!u(r)%, f € C"™H(I). Tt is easy to verify that

%Tk,l(r, t) = Pr(t, 1) (2.1)
and
SUprer / W (z, 1) |de| < oo, (22)
r

and using dominant convergence theorem, we obtain

k
GESAN0 = SN, er (23)

fork=1,2,...,m.
If k<m, then

1

76 = Tl = [ €= 070 at

L. K+
< Cg||f(k+l>|| o — " (2.4)

and if k = m,
|f(2) = T (f)(z, )]

_ ‘ﬁ/ =" Q) - 0] &

4
— (m) | _ _qm
<ot = )1 235)

for t,t € I', therefore
ISu,k(f)(f)|<C/F (@)1 |del < Nul 11 £V, rer (2:6)

fork=1,2,...,m—1,and

w(f™,y)
y

1
Sum(1)(0)] <llul / dy,  tel 27)

Thus, we have
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LEMMA 2.1. For the operator S,, there hold (2.3) and the following
estimates:

if feC"and

dk
GESD|| <Al k=001 28)

m)
if £ satisfies Dini condition, i.e., fl 2 fx Ldx < 0.

S| <ell [ AL, 29)

We also have

LEMMA 2.2.  There is a constant ¢ > 0 depending on m, u and I' such that

(ZZ u<f>’X) <efful My (/)" (1 + | In x]) (2.10)

or

o(Lsirx)<e(lul+ [ 2B g a e, @y
dr oY

if u satisfies Dini condition and u(o) = u(p) =0, where f € C™*(I') and
x> 0.

Since the proof is longer, we put it in the last section.
From Lemmas 2.1 and 2.2, it follows that

15 ()]

where 0<v <y and N(u) = [jul| or 0<v<p and N(u) = [ju]| + [; 2“2 dx if
u satisfies Dini condition and u(a) = u(f§) = 0.
We rewrite the operator A4,, as

Ccmy <CN(”)||f'||Cm.p7 (2.12)

Au(0)(1) = A%0) (1) — — / w(z) o) dr,  rel,  (213)

T

where

n,  tel  (2.14)
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and let
k()0 = [ w02 an, rer
or
K(0)(1) = ~Suo(). (2.15)
Thus,
4, =4° - K. (2.16)

THEOREM 2.3. There exists a constant ¢ > 0 such that

&

ﬁAw(qo)‘ <cllol| e k=0,1,....m—1 (2.17)
for ¢ € C" and

143(0)]

for ¢ € C"™H(T), where 0 <v<p. If b(a)w(o) = b(p)w(ff) = 0, then (2.18) is
valid for v = p.

cns @]l (2.18)

Proof. AS, can be written as

i/ w(0)b(@)le() — e()] ,

171 T—1t

Ay(o)(1) = AL (1) (0) + tn, terl

or

A(@) (1) = p(D)o(1) +%wa(<p)(t), (2.19)

p() =p-p. <ﬁ t) (2.20)

is a x-degree polynomial (p(z) = 0 if x <0) (cf. [16]), and it is obvious that
Ipe)“ll<cllellce,  k=0,1,...,m (2.21)
for ¢ € C"(I') and

M((pe) ") <cllllon,  0<v<p (2.22)
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or

1pollens <cll@llona (2.23)

for ¢ € C"™#(I'), where the constant ¢ depends on a(z), b(¢) and m. On the
other hand, wb satisfies Dini condition, so that there hold (2.8)~(2.10) for
Sywp» with u = wb and there also holds (2.11) if w(a)b(ax) = w(f)b(p) = 0.
Thus we obtain (2.17) and (2.18) from (2.19). The proof is complete. 1

Let b € C"™#(I'). From Lemmas 2.1 and 2.2,

dk

WK<"’>H<6’I|W¢||||b<k+‘>||<c||(p||, k=0,1,...,m—1  (224)
and

K (@)l <elbwall [Bllcns <cllwll [Bllenslloll.  0<v<p  (225)

for ¢ € C(I'), and if w(a) = w(f) = 0, then
, Ywiwe, y)
IK(@)llcns <{ [wel| + A [1B1] cm

<e(lloll+ [ 02 ) 226)

for ¢ € H*(I'), where we have used the fact that
o(we,y) <[wllw(e,y) + llellw(v, ).

Thus, we obtain

THEOREM 2.4. Let b € C"™H(I'). Then there is a constant ¢ > 0 such that

dk
‘ WAW((/)) .<c|(p||ck+1, k=0,1,... m—1 (2.27)

for ¢ € C"(T') and
4w (@)l cns < cllpl] cm (2.28)

for @ € C"™H(I), where 0<v<p. If w(ar) = w(p) = 0, then (2.28) is valid for
V=L

ExaMPLE 2.1. Consider the operator A in (1.1) of Section 1. Since a, b
are real functions, we have wy(£1)b(£1) = 0 ([16]). And b is a polynomial,
so that 4 is bounded on C"*(I') according to Theorem 2.4. An interesting
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result is that the operator

A o)1) = aliyma)ol) — - / ' wa(@b(De()

, te[-1,1] (2.29)
is bounded on C"#(I') where we only require a,b € H[—1,1]. It appears
that its smoothness does not depend on « and b.

3. SOME PROPERTIES OF COMPLEX SPLINES

Complex splines have many good properties (for details, see
[1,2,4,10,11]). In order to discuss the approximation of singular integral
operators, we need to have a further investigation for the splines. Here we
only refer to the linear and cubic interpolating splines.

Let

Aro=ty<t1 <---<ty=p

be a partition of I', I =1 1t;, h=max <<y |4t]|, and fj(” =f0(z)),
where #,_; < t; means that ;_; precedes t;, At; =1t; —t;_; and ' € C"(I').
We denote the linear and cubic interpolating splines of /" by s;(f) or s; and
s3(f) or s3, respectively.

For linear interpolating spline, we have

— 1
g rery, j=12,....N

si(f) = Az,

and

[ls1(f) =1l < com(fh). (3.1)

Let t,/ €', ¥ <t and |t — 7| > 0. Then there are k and j, 0<k<j<N,
such that r € I'; and ¢ € I'y. If k<j, we have

[s1(2) = s1(O)[ < s1(8) = fima| + | fi=1 = Sl + | fie = s1(£)].

According to the property of modulus of continuity,

| fic1 = fil So(f, -1 — t])
<1+l'|1—’|k') A



94 YONG JIA XU

|t — 51|

— f. < 7At
|s1(2) — fi-1l 71 o(f,]4t])
|t — 11| |44 ,
< 1 t—t
|41)] +|l—f’| /.| )

<(a+ o111

|fks1<z'>|<(co+' ') TA

g

and similarly,

So we have

lt—t 0|+ -1 — | + |t =
=1

10 =510 < (14 20+ Jotr =
< (14 3co)o(f, ]t —1]).
If k =, then

[

[s1 () = 1 ()] < 7] o(f,[44))

1= 1] 41| /
< 1 =1
0] +|t_t,| o(f,|t—11)

< +c)olf[t=7)).

Thus, we have proved that
o(s1,x)< (1 + 3co)o(f, x), x=0. (3.2)
From (3.1) and (3.2), we conclude that
o(s) —f,x)<co(f, X', x>0, (3.3)

where ¢ =2 + 3¢y, 0<y<1. We show the conclusion as follows.
If 0<x<h, then x<x"h'"7 and

( fﬂ ) (Sl, )+(’U(fvx)
<24 3c))o(f, x)
co(f,x"h'=7)
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by (3.2); if x > h, then h<x’h'~" and
o(s1 —f,x) <2||s1 — |
<L2w(f,h)
<co(f,x"h'™7)

by (3.2). Therefore (3.3) follows.
Thus, we have obtained

THEOREM 3.1.  For the linear interpolating spline s; of f € C(I'), there
hold estimates (3.1) and (3.3).

For f € H*(I'), we let v = yu, then (3.3) becomes
o(s; —f,x) <cM(f)x"h"". (3.3)
Furthermore, we have
COROLLARY 3.2. Iff € HYTI), then

lls1 () =11

e <EM ()R (3.4)
for 0<v<p.
Now we discuss the cubic interpolating splines. Here we require that

max;|41| |44 + |At41]

<o < maxj<;<nN— <6 <2 3.5
X (1 oo, I<j<N-1 |Atj+At]+]| IO ) ( )

minj|Atj|
and the boundary conditions are given by

sh(t0) =0,  S(ty) =0, if £ € C(I),
s3(10) =/"(to),  §'(tw) =f"(tw), if f € CY(D),

s5(0) =f"(t0),  "(tw) =f"(tw), if f € CHI).
For f € C", m=0,1 or 2, we have

Hsgr) —f<r)||SCUJ(f(m),h)hmﬂ‘, r=0,1,...,m (36)
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and

Because of the similarity, we only give their proof under m = 2.
The cubic spline has the following expression:

M;_, 3 M 3
(1) =221 — 1) + —L(t — 1,
fic1 M4y fi M;Ay
DL I (4 — ) 4+ (A - ) (-
N ) (R R ¢ ) (B!
tel;, j=12,...,N, (3.8)

where M; = s5(¢;),j =0, 1,..., N which are determined by the equation
AM =D (3.9)

with M = [My, My, ..., MN]T. Here the matrixes A and D are given by

and

D= [f()”a6f[z()at17t2]7"'76f[lN—2’tN—17tN]7 IG]T7

respectively, where u; = ﬁ;’m, Zj=1—;and f[t; 1,1, t;11] is the second
J ) : N
divided difference of /" at the points #;_i, ¢, ;4.

Let CV™! be a N + 1 dimension complex space with maximum norm || - ||

and x = (x0,x1,...,xy)" € C¥*!'. Suppose k such that ||x = |x|.
We have
| k| if k=0,N,
[|Ax]|| = )
|,ukxk,1 + 2x; + /Ikxk+1| if 1<k<N -1
= (2 - o)[x|].
It means

IATYI<1/(2 = ). (3.10)
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Let £ = [f7.f7,....f%]". From
Of [tj—1, 1), 1] — /v‘;fj L2+ )
= 6(fl-1, 11, tin] = o) + (" = £20) + 40 = f)
and [1]
|flti1s 1, 1] = 3 | <co(f", | 48)), (3.11)
we have
[ID — Af"||<co(f",h). (3.12)
Then by (3.9), (3.10) and (3.12),
M — ]| = [|A™ (D — AF) | <50/ )
or
|M; = [ | < co(f", h) (3.13)
and also
My — " (8)| < co(f", h), k=j—-1, jtel; (3.14)
forj=1,2,...,N. From (3.8), the second derivative of the cubic spline is
t—t 1=ty

Sg/(t) = jA—M/‘_] +

M; tel; i=1,2,...,N 3.15
o Alj s ely, J ) 49 , ( )

and from (3.14) and (3.15), we have

[5(6) =" (1) =

0y = 0) + S (0

At
i L
’ 41| ’ maxy—;-1,; {|Mx =10}
]

< co(f"h), tel;, j=12,...,N. (3.16)

Thus, we have proved (3.6) for r =2. If r =1 or 0, (3.6) is easily obtained
from the relations

500 ~F ) =5 [ (=l 7@ .

j—1

50— /() = / $5(0) " (@) de + sy(-) —f(G-0), (€T,
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and

t

50 -1 = [ 56 - @ldn 1T,
fj-1

where j =1,2,...,N.

Let ¢, € I'. If |t — ¢| > h, then, by (3.6),

|55(2) = s5()| <Is5(0) ="+ 117 () =f" () + | f"(£) = 55(7)]
<cda(f" h) +o(f" |t -1
<co(f"|t="1)),

and if 0< |t — | <A, from

_ M = M|
45|
1
< g UM =117 =l 1 = M)
j
)
|41
w(f",h)
h )
where we have used (3.13) and (3.5), it follows

|s3'(1)]

<c

ter;, j=1.2,...,N,

[s3() = 55()] <

(3.17)

(3.18)

(3.19)

Hence (3.7) is valid for x > 0. Of course, (3.7) is valid if x = 0, and so (3.7) is

true. Similar to (3.3), we also have
o = 10 ) <co(f, Xh'), x>0,

where 0 <y< 1. Thus we have proved

(3.20)

THEOREM 3.3.  For the cubic interpolating spline s3 of f € C™(I'), there

hold the estimates (3.6) and (3.20) where m = 0,1, or 2.
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For f € C"™*(T'), (3.20) becomes
w(sgm) — M X) <M (f )X R, 0<v<yp
and thus we have
COROLLARY 3.4. Iff € C™*(I'), then

HS%(]() _f.”C”” SCMIU_(f(m))hM_V,

where 0<v< u.

4. COMPLEX SPLINE APPROXIMATION

99

(3.20')

(3.21)

In this section, we discuss the complex spline approximation for singular
integral operators. For convenience, we assume that the operator A, is
bounded on C™*(I') and let s(¢) denote the linear or cubic interpolating
spline of ¢ € C™#(I'). Here the splines are those defined in the previous
section and m = 0,1, or 2. In the case of linear splines, m automatically

equals 0.

It is effective to use complex splines for the numerical evaluation of
Cauchy-type singular integrals. The following theorem is about their error

estimates.

THEOREM 4.1. If f € C"™M(T), then
14u5(f) = Aw( )l oe SeM(fORm 1 0<hk<m — 1
and
14us(f) = Aw(Ollem <l S ena ™5 O<Sv<p
Proof. Using Theorem 2.4 and the results in Section 3, we have
14ws(S) = Aw(Nllce <ells(f) = (Ol e
<M, (fm)pmtnhe 0<k<m-—1
and
14ws(f) = Aw(H)llcno <ellsCf) =Sl ens
<</l
if f € C"™#*(I'). The proof is complete. 1

cmah” Y, o<v<p

(4.3)
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Now we consider the operator approximation by complex splines. Let
Aw‘A = EAws. (45)

The spline operators § and s may be different. For convenience, we assume
§ = s here.

THEOREM 4.2. If ¢ € C"™*(I'), then
14w.4(0) = Aw(@)l[cnr < cll@llenaht™, OSV<p (4.6)
Proof. By Corollary 3.2 or 3.4 and Theorem 2.4, we have
[[4u,4(9) = Aus(9)llone <eMu((Aws(9)™ )i

<clls(o)]

<cllollemh™ (4.7)

-V

Cmik h”

and from Theorem 4.1, it follows that
||Aw.,A(§0) — Aw(9)] cmy

< Awa(@) = Aws(@)||cne + [ Aws(p) — 41 (0)]

<c[lol|cnh", 0<v<u. (4.8)

cmy

The theorem has been proved. 1

5. APPLICATIONS AND REMARKS

As a direct application of the results obtained in the previous section, we
give a scheme for the numerical solution of singular integral equations over
open arcs. We know that the Cauchy-type singular integral equation

a(t)p(t) — b(®) /Fﬁr)tdf + /l/Fk(l,r)qo(r) dt =1 (1), tel’  (5.1)

i Jrt—
can be regularized as a Fredholm integral equation
(I +24,K)y =f*, (5.2)

where Ky(1) = [ wi(0)k(t,0)y(x) dx, y = @/wi, wi = [(d* — Pyw] ™!, f* =
Awf + bN,_1 and N,_; is a given polynomial with degree k — 1 (N,_; = 0if
k<0) (for details, see [12]). Here all given functions are Holder continuous,
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A is a constant, and undetermined function ¢ is restricted in /g, which is a
function class whose functions are integrable on I' and are Holder
continuous on [I' except at the endpoints. Using A, , to replace A4,
in (5.2), we have (I +2A4,4K)ys =1*, and then letting uy = y4 — f*,

ga = —AA, 4 Kf*, we get

(I + /AL,AW’AK)L{A =da. (53)

If /1 is not an eigenvalue of (5.2) and % is small enough, (5.3) has unique
solution and the solution is a spline (cf. [9]). Thus, we can obtain the
approximate solution of (5.1) by collocation method and the error estimate
is easily obtained from Theorem 4.2. The problem will be discussed in detail
in another paper.

For p = 1, the constants ¢ and some other applications, we present some
remarks.

Remark 1. The assumption u< 1 is only for convenience. Examining the
proof of Lemma 2.2, we see that if g = 1 (2.10) is still true but (2.11) is not.

Remark 2. The constants ¢ in theorems of Section 2 depend on a, b, m, u
and I'. In Section 3, constants ¢ depend on I' and also depend on c¢; if the
splines are cubic. Thus, in Theorem 4.1 and 4.2 the constants are related to
a,b,m,u, I and ¢y, but do not depend on v.

Remark 3. Consider the following Cauchy-type integral:

= [L%ar, (5.4)
rt— t
which is approximated by
TAf (1) = /rs(l_fz(:)dr. (5.5)
If g(o) = g(p) = 0, it is easy to prove
'o(g,y)
|Tg(t)|<c/0 ) dy, tel. (5.6)

Thus, by (3.3) or (3.20) we have

Yo (f —s ¢ LI
|(T—TA)f([)|<C/O (f y(f)’y)dygl—y/o (/;’y)dy,

terl (5.7)
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where 0<y< 1. This means that if f satisfies Dini condition then T,f is
uniformly convergent to 7f on I'. We can also obtain

(T = Tf@l<y el =, rer (5:8)

iffeC” m=1or?2.
Remark 4. If function w has integrable singularities at the endpoints of I',
such as w; mentioned above, we can make a transformation with w multiplied by
a simple polynomial ¢(¢) = § — t,t — o, or (f — t)(¢ — o) such that the operator

becomes a smooth operator divided by ¢(¢) (cf. [16]). For example, the operator

@),

— ", e (—1,1 5.9
e (~1,1) (5.9)
can be transformed into
/1_ 1
Tof </ =2/ gy L / il f(‘[)d‘[), (5.10)
Tt nJav1—1?

where o(t) = 1 — 12
6. PROOF OF LEMMA 2.2

Proof. Equations (2.10) and (2.11) are equivalent to
[Sum(f)(11) = Sum(f)(12)| SeMu(f)6" (1 + | In d]) (6.1)
or

1
Su.m(f)(ll)—Su,m(f)(lz)|<c(||u|+ / @@)Mu(f“’”)aﬂ, (62)

if u satisfies Dini condition and u(x) = u(f) =0, where #,,, € I' and
|ty — t;| = 6. Now we prove (6.1) and (6.2).
For convenience, suppose 0<d<1and ax <t <1, < f.

(1) If |ty — o > 0 and |f — 1] <9, let
|Su,m(f)(tl) - Su,m(f)(t2)|

_ A O =Tl NHe ) f(0) = Tul N t)]
=m! (/a?l +/f:ﬁ) u( ) [ (T _ tz)erl (‘C _ Z1)m+1 ] d

= |I] —|—12|.
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From (2.5) and |nf| = | t162 | + | 12| <2¢00, it follows that

|Iz| =m!

/\ (o) lf(r) ~Tu()E0) f() = TulN)(, zl)] .

1ﬂ (T _ t2)m+] - (T _ tl)m+]

< cllull M, (£ / (It — ™"+ o — o)) el

np

< clfull M (1)0". (6.3)

Define the function
h(t) = T (/) (v, 1) = Tu(f)(z,22),  T€T. (6.4)
Then

J(m) ([2)
m!

h(t) =h(t) + ()t — )+ + (t—0n)" (6.5)

because /(1) is an m-degree polynomial of 7. Noting that
W9 (62) = T i (f ) (t2,1) = P (12) (6.6)

and (2.5), we have

m! m

f )M#(f(m))éeruk (67)

for k=1,2,...,m, therefore

Tn(f)(z,12) = Tn(f)(z, 11)
/llﬁ/f u(r) ('L' _ tz)m-‘rl dt

m (k)

pr | 06?1 “E _ 12|’117k+1

i =m!

m - m m—K u(‘c)|
<eM, (/") Y <k>5 ktu |7m_k+]|dr\

k=0 an [T — 1

<c'MM(f(m))|u||6“(1 +in é) (6.8)
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If u satisfies Dini condition and u(ff) =0,

u\tT u, |t ﬁ
I()I| di| = |u(r) — ()||d|</A o(u \_ D|d|
u [T — 1] w T 1 w11
Forreocﬁh,
lt—n|=|th| =t |+ 06| =0 -] =6, (6.9)
but |8 — 1] <9, thus |f — f2| < ¢l — 1] and
[t = pI<|t — ta] + |12 — BI< (1 4+ o)t — 12]- (6.10)
So we have
N 1
9{[] |T | Dt/;] |T_ Z‘2| 0 y
and
. m) lw(u7y)
it <eM,(f"™) ||u||—|— ) dy |o". (6.12)
By (2.5),

1 1
ir =m! /a;l u(t)[ f(t) = Tn(f)(z,11)] l tz)m+l - )m+11 dt

(t— (t—1n
|’E _ t1|m+u|(r _ ll)m+l _ (’E _ lz)m+l|
< o |ul| M (£ dt
= || H .u( ) a,;l |‘L'—[1|m+1|‘[—[ |m+1 | |
|k+,u—l
aty —

Let /} = |ac?1 l, L= |ocA12| and s be the parameter of arc length. Using
integration by parts and /; </,

It — tl|k+/k1 wlth |k+ﬂi1 I (h — S)kﬂt*l
/A kel |d] <C/ ~ ket ds:c/ I g ds
oy [T — 1 0|t 0o (h—y)

. k+1 /11 (Zl . S)kﬂt o 1 liﬂ+u
k_|_'u 0 (12 7S)k+2 k+ﬂl§+1
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k+1 [h(h—g)k
Ser s
+1Jo (lz — S)

k+1 1 1 1
S nl—n |
tul—pul(h—n)= 1}

but b — i = |111,| > 8, then

k+u—1
—t k+1 1 1
/A %\dﬂ@/ . EN
oty “E—lz|' k+ﬂl_ﬂ(12—ll) H
for k=0,1,...,m, so we obtain
i <cM,(f™M)o".
Thus from
- Tm ,l - Tm 7[
= [ o[ Tl et) [0 =B,
oty (‘E — lz) (‘C — 11>

o [ u(o) {Tm(f)(r,tl) ~ T(/)(5.0)

5 (T _ t2)m+1

#1760 = Tl N(w. 1) ( A >> } d.

L <ip + i
M (f)|ul[6"(1 + |In d)) if u(p)#0,
M (f <| \|+f‘“’”y )5/‘ if u(B) =0

and together with (6.3), we obtain
Sunl)(11) = Sum(£) )] <111 + |1
My (£0) 161 + [ 8] if () £0,
w0 (1l 3 22y )or it u(s) =0

and there follows (6.1) and (6.2).

105

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)



106 YONG JIA XU

(i) If |t — | <0 and |p — 2] > J, similarly, we also have (6.18) but o in
place of 5. Hence, (6.1) and (6.2) are valid.
(i) If |s; —a| > d and | — £2] > 0, let

|Su-m(f)([l) - Slt,m(f)(t2)|

(/" ! / /mf) [ T_':Z()];)ff .12)

f() = Tul£)(x, n)] dr‘

(T -1 )m+1

= |h+ L+ L. (6.19)

Similar to the proof of (6.3),
\L| <M, (f™M)s". (6.20)
We rewrite I} + I3 as i; + i, where

i :Wl'/; u(r) Tm(f)<fa[1) T (f)(t t2)d

(‘E _ t2)m+1
Tn(f)(t,11) = T(f) (T, 12)
+ m! /r;ﬁ u(t) PRPRTE dr, (6.21)

o= [ u(r)[f(r)—h(f)(r,n)]( _;)mﬂ— l)mﬂ>dﬂ:

(T (t—1

(T o tz)m+1 ('C o tl)n‘l+l

+ml /IAﬁu(T)[f(T)—Tm(f)(f,fz)]< (R )dr.
(6.22)

Using (6.4) and (6.5), we also rewrite 7, as

HO(n) u(z) W (1) u(t)
" Z [ /“’k' (r— )" ! et k! /r;ﬂ (t— )" ! dT]

u(t) u(t) m m
- (/x?l T—1 dut /zZ/M - tldr) ) = @)

= i1 +ip2. (6.23)
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Similar to the proof of (6.8) and (6.15), we have

il < cllll ()", (6.24
. 1
il <ellullp, ()" (1415 (6.29
and
ol <cllul| M, ()" (6.20

If u satisfies Dini condition and u(o) = u(ff) = 0, we have

/ ﬂdw/ﬁﬂdf

w, T— D npT— M

R ET P TR T
5;[\] ‘E—tz 6P T—ll

| |
+ u(t dt + u(t /A drt
<z>/@w W [

-t —1
o [ AEt [ olula,,
o |‘C*l2| T—1

5] Lp

p—1

nh—n

+

3

—~

6.27)

u(t) it

i _;2 +l'91:| +M(ll)|:ll’l

where 0 is the angle between ¢; — t, and o — #; and 0, is the angle between
ﬁ— t; and t, — t, and

h—n
o— 1

+mq+umﬂmﬁ_“
Hh—=un

i

u(ty) []n

= |[u(t2) = u(t)] |ty — ] = [u(r2) — u(e)] Info — 15

+ [u(tr) —u(B)] In|p — t] + i[01u(t2) + Oru(t)]

1
<c|||ul|+ sup o(u,x) ln} , (6.28)

0<x<l1



108 YONG JIA XU

therefore

1
/ ﬂdr—k/ﬁ ) 4 <c<||u||+/ Mdy), (6.29)
1?]‘5_12 tzﬂ‘c_tl 0 y

1
|memﬂMQw+Aw%”@ﬁ% (6.30)

so that

Now we obtain
i | <lin| + lin2]

mmﬂmowuéw%”@yﬂﬁuwzmmzm

< (6.31)

My () |[u]|5* (1 +In %) otherwise

and together with (6.20) and (6.26), (6.1) and (6.2) are valid in this case.
@v) If |Zl — O(|<(S and |ﬂ — 1‘2|S5, then |F| = |O€ll | + | it | + | 12,[)’|<3C()(3.
From (2.5),

1Sum(f)(11) = Sum(f)(12)]
<C||”||Mu(f(m>)/r(|7:_[1‘71+H+ [t — 0o )dx|
<clful| M (f") )"
<3cocjul| M, (™))" (6.32)
and then (6.1) and (6.2) are valid.

Now we have proved that (6.1) and (6.2) are true in each case. The proof
is complete. 1
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